Forecasting wind power based on an improved al-Biruni Earth radius metaheuristic optimization algorithm

نویسندگان

چکیده

Wind power forecasting is pivotal in optimizing renewable energy generation and grid stability. This paper presents a groundbreaking optimization algorithm to enhance wind through an improved al-Biruni Earth radius (BER) metaheuristic algorithm. The BER algorithm, based on stochastic fractal search (SFS) principles, has been refined optimized achieve superior accuracy prediction. proposed denoted by BERSFS used ensemble model’s feature selection boost prediction accuracy. In the experiments, first scenario covers binary algorithm’s capabilities for dataset under test, while second demonstrates regression capabilities. investigated compared state-of-the-art algorithms of BER, SFS, particle swarm optimization, gray wolf optimizer, whale BERSFS-based model also basic models long short-term memory, bidirectional gated recurrent unit, k-nearest neighbor model. statistical investigation utilized Wilcoxon’s rank-sum analysis variance tests investigate robustness created achieved results confirm effectiveness superiority approach forecasting.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal power flow based on gray wolf optimization algorithm using probability density functions extraction considering wind power uncertainty

In recent years, utilization of the renewable based power plants has become widespread in the power systems. One of the most widely used renewable based power plants is wind power plants. Due to the utilization of wind energy to generate electricity, wind turbines have not emitted any environmental pollution. Thus, in addition to economic benefits, utilization of these power plants is of great ...

متن کامل

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

AN EFFICIENT METAHEURISTIC ALGORITHM FOR ENGINEERING OPTIMIZATION: SOPT

Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems so far. In the present study, a simple optimization (SOPT) algorithm with two main steps namely exploration and exploitation, is provided for practical applications. Aside from a reasonable rate of convergence attained, the ease in its implementation and dependen...

متن کامل

Grid Power Optimization Based on Adapting Load Forecasting and Weather Forecasting for System Which Involves Wind Power Systems

This paper describes the performance, generated power flow distribution and redistribution for each power plant on the grid based on adapting load and weather forecasting data. Both load forecasting and weather forecasting are used for collecting predicting data which are required for optimizing the performance of the grid. The stability of each power systems on the grid highly affected by load...

متن کامل

Space-time wind speed forecasting for improved power system dispatch

To support large-scale integration of wind power into electric energy systems, state-of-the-art wind speed forecasting methods should be able to provide accurate and adequate information to enable efficient, reliable, and cost-effective scheduling of wind power. Here, we incorporate space-time wind forecasts into electric power system scheduling. First, we propose a modified regime-switching, s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Energy Research

سال: 2023

ISSN: ['2296-598X']

DOI: https://doi.org/10.3389/fenrg.2023.1220085